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Abstract. Ground state geometries of small hard sphere clusters were studied using two different type of
contact interaction, a pair-potential and a many-atom interaction. Monte Carlo method in an FCC lattice
with all possible (111) stacking faults was used to obtain the minimum energy geometries for clusters
up to 59 atoms. Due to the surface energy, FCC packing is generally favoured as opposite to the HCP
structure. However, in most cluster sizes the ground state obtained with the many-atom interaction has
one or more stacking faults. The most symmetric geometry is usually not the ground state. Clusters with
59 and 100 atoms were studied due the possibility of a high symmetry cluster with stacking faults in all
four directions. The size dependence of the total energy has similarities with that of the average moment
of inertia.

PACS. 36.40.-c Atomic and molecular clusters – 61.46.+w Nanoscale materials: clusters, nanoparticles,
nanotubes, and nanocrystals – 61.72.Nn Stacking faults and other planar or extended defects

1 Introduction

The ground state atomic arrangement, or geometry, de-
termines many properties of small atomic clusters (for
reviews see Refs. [1,2]). For instance stabilities, ionisa-
tion potentials and electronic properties in general [3,4]
vibrational spectra, polarisabilities and thermal proper-
ties [5] of clusters are sensitive to the atomic arrangement
in the cluster. Atoms which are bound together with pair-
potential, like rare gases, or by metallic bonding tend to
form close-packed structures, manifested by icosahedral
or face-centered cubic structures. Rare gases as well as
many metals (e.g. Na, Mg, Cu) show magic numbers cor-
responding to icosahedral packing [1,6] while others, like
Al show magic numbers compatible by octahedral FCC
packing [7]. The experimental results of free clusters at
low temperatures usually suggest that the cluster is in
its ground state geometry [1,8]. How the equilibrium is
reached is an interesting research topic as such, including
complicated diffusion mechanisms [9,10]. In this paper,
however, we are not interested how the ground state is
reached but what is its geometry and what is the role of
stacking faults in the stabilisation of the geometry.

In the case of large clusters the optimal geometry is
determined by the Wulff construction [11]. Molecular dy-
namics simulations have shown that the Wulff construc-
tion dominates only when the cluster has hundreds or
thousands of atoms [9,12]. Due to the balance between
the internal stress and the surface energy the geometry can
depend on the size. For example, molecular dynamics sim-
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ulations suggest that the best structures of nickel is icosa-
hedron for N < 2 300, decahedron for 2 300 < N < 17 000
and an FCC polyhedron for N > 17 000 [13].

In the case of small clusters with less than 100 atoms,
most of the atoms are at the surface and the detailed
surface geometry becomes important, while extended
structural defects like stacking faults will have a small
formation energy due to the finite size. This allows a huge
number different isomers within a small energy range.
Moreover, in simple metals the electronic structure with
discrete energy levels plays an important role in deter-
mining the geometry [3,14]. The large number of isomers
makes an ab initio determination of the cluster geometries
difficult and consequently it is restricted to selected small
sizes [15–20].

Systematic study of geometries of small clusters have
been done by using model potentials, either pair-potentials
or many-atom potentials, usually with parameters fitted
to some experimental properties. Lennard-Jones (LJ) pair-
potential has been most extensively used to study the
ground states and low energy isomers. Doye et al. [21–23]
used the LJ potential to determine a double-funnel energy
landscape of the 38-atom cluster and to characterize the
potential energy surfaces of clusters containing 13, 19, 31,
38, 55, 75, and 98 atoms. Doye and Wales [24] have used
the modified Dzugutov potential to study the structures
of polytetrahedral clusters. They found out magic num-
bers N = 13, 19, 23, 26, 29, 32, 34, 38, 42, 46, 57. Doye
et al. have also used the potential of Pacheco and Prates-
Ramalho up to N = 105 and found that found that the
magic numbers (N = 13, 31, 33, 35, 38, 48, 50, 59) above
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the smallest 13 atom icosahedron are based on decahedral
or close-packed structures. They used also the spherically
averaged Girifalco potential, which gave magic numbers
N = 13, 26, 29, 31, 33, 35, 38, 50, 57, 59 [25].

The aim of this paper is to study the effect of stacking
faults in determining the ground state geometry of close-
packed clusters. They are formed usually when atoms are
bonded by a van der Waals interaction or by metallic
bonding. A realistic model for rare gases would be the
Lennard-Jones interaction and for metals any of the large
number of many-atom interactions suggested in the liter-
ature [26]. Baskes [27] has studied the dependence of the
lattice structure of the bulk metal of the parameters of the
many-atom potential. The use of these kind of potentials
would be important in studying the interplay between cu-
bic and icosahedral structures, in a similar fashion as Doye
and Wales [28] have done in the case of pair-wise interac-
tions. However, we restrict to models which prevent for-
mation of icosahedral and decahedral structures. Our goal
is to understand general trends rather than study clusters
of any specific material.

To this end we choose to use hard spheres. They al-
low only FCC and HCP lattice structures as well as their
mixtures. We use two different models: a pair-wise contact
interaction and a many-atom model, where the interaction
energy is proportional to the square root of the coordina-
tion number. In large clusters the FCC structure domi-
nates due to the fact that the low energy (111)-surface
can have four different directions while in HCP it can have
only one direction. This makes the Wulff construction of
FCC to be energetically favourable as compared to that
of HCP (note that in the hard sphere model the bulk en-
ergy is the same for FCC and HCP). In real clusters with
long-range interactions, one has to take into account the
strain energy, and the energy minimum is obtained as a
balance between the coordination number and strain en-
ergy [23]. However, we use a contact interaction and the
strain energy vanishes.

In this work we focus on the structure of clusters with
(N = 1...59 and N = 100). In the size-range N = 1...59
most of the ground state clusters have stacking faults if the
total energy is determined by a many-atom potential while
a pair-potential typically produces many isomers with the
same energy and, in most cases, at least one of them is a
clean FCC cluster. Our results for the pair interaction are
in agreement with those obtained by Doye and Wales [29]
except for four sizes 33, 49, 50, and 51 for which we found
a better ground state geometries.

We study the shape and the compactness of the cluster
by determining the moments of inertia and show that the
size-dependence of the total energy correlates with the
size-dependence of the average momentum of inertia.

2 Optimization methods

We focus on a topological model for clusters. To this end
we consider hard spheres with two different models for the
contact interaction. In the pair-potential model (PP) the

total energy is

EPP = −V
2

N∑
i

Ci (1)

where Ci is the coordination number of the atom i and V
is the strength of the interaction (V determines the energy
scale). The second model (TB model) has a square root
dependence of the coordination number

ETB = −V
2

N∑
i

√
Ci. (2)

The square root dependence can be derived from a simple
tight-binding model [30,31] and has shown to be a good
approximation for the tight binding model of small clus-
ters [32]. Any nearest neighbour interaction gives the same
cohesion energy for bulk FCC and HCP lattices, since the
formation energy of stacking faults of (111)-layers has zero
energy. In the case of a cluster all atoms do not have the
same coordination and the optimal geometries of the two
models can be different. Keeping the total coordination of
the cluster fixed, the TB model favours structures where
each atom have similar coordination while the PP model
does not care how the bonds are distributed. We want
to stress that although the square root approximation of
equation (2) is quite accurate approximation for the true
tight binding energy of surfaces, bulk defects and also for
clusters, it does not take into account the discrete elec-
tron states which are important in small clusters. Conse-
quently, the geometries obtained here for the small clus-
ters using equation (2) should not be confused with the
ground state geometries determined with the true tight
binding method applied to hard spheres [33].

We first consider a pure FCC lattice. The atoms can
only occupy fixed lattice sites. Finding the optimal geom-
etry is then a straightforward optimization problem and
a simple Monte Carlo procedure can be used to find the
ground state geometry [34]. First an FCC lattice is gener-
ated inside a spherical volume and the lattice sites are ran-
domly populated with N atoms. Next, the Metropolis al-
gorithm is used to move atoms: an atomic configurationAi

is updated to Af by selecting one of the atoms randomly
and moving it to a randomly selected empty lattice site.
The energy difference ∆E = E(Af) − E(Ai) determines
whether the move is accepted (e−∆E/kBT > γ) or rejected
(e−∆E/kBT < γ, where γ is a random number between 0
and 1). The simulation is started at a high temperature
which is gradually decreased to zero. The optimization is
repeated numerous times for each cluster size to obtain
the ground state. Note that for many cluster the ground
state is degenerate in the sense that there can be more
than one topologically different cluster with the same en-
ergy, especially in the case of the pair-wise potential (the
simplest example is the six-atom cluster which can be a
perfect FCC octahedron or the five-atom geometry with
one atom added, see Fig. 1. Both have 12 bonds.).

The possibility of stacking faults makes the procedure
more complicated. We allow stacking faults in all four
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Fig. 1. A selection of the ground state geometries in the TB
model. For the 6 atom cluster also the geometry based on the
5 atom bipyramid is shown. The sizes 11, 12, 26, 34, and 50 do
not have FCC symmetry.

possible (111) directions and build a lattice including all
possible sites generated by the stacking faults. In plac-
ing atoms in the lattice, we require that the minimum
distance between any atom pair is the nearest neighbour
distance in an FCC lattice (twice the hard sphere radius).
The Monte Carlo simulation in this extended lattice be-
comes much slower than simulation in the pure FCC lat-
tice. Moreover, due to the larger number of low-energy
isomers more simulations are needed to find the ground
state structure. Typically 500 to 1 000 simulations were
done for each cluster size. For a given cluster size, several
simulations ended to the same geometry. To identify the
topology of the obtained cluster we determined both the
radial and the angular distributions of the atoms.

For each cluster we determined the lowest energy iso-
mers using both model potentials. In addition we de-
termined the three moments of inertia for the principal
axis and looked for correlation between the overall cluster
shape and the ground state energy.

3 Results

Tables 1 and 2 give the lowest ground state energies found
with the PP, equation (1), and the TB interaction, equa-
tion (2). For each size we show the energy of the best
FCC geometry and the energy of the best geometry with
one or more stacking faults (SF). In the cases of 4, 38, 39,
and 40 atoms the cluster with stacking faults has always
less bonds than the best FCC geometry. In those cases
we have not determined the best SF geometry. The ta-
bles show that in most cases a SF structure has the same
or lower energy than the best FCC geometry. Figures 1
and 2 show examples of the obtained ground state geome-
tries of the TB model. Our ground state energies for the
PP model agree with those of Doye and Wales [29] except
for sizes 33, 49, 50, and 51 where we have found a better
geometry (for 33, 49, 51 our results have one bond, for 50
two bonds more than those of Doye and Wales).

Table 1. The lowest energies of the FCC structures and struc-
tures with stacking faults (SF). N is the number of atoms. For
the pair-potential model (PP) the (negative) energy is given
as a number of bonds. For the many-atom model (TB) the to-
tal energy is given. The column “layers” give the numbers of
atoms in each close-packed layer for the best FCC structure
of the TB model. For N = 4, 38, 39, and 40 there is no SF
structure with the same number or less bonds than in the best
FCC structure.

N −EFCC
PP −ESF

PP layers EFCC
TB ESF

TB

4 6 (3, 1) −3.464

5 8 9 (4, 1) −4.439 −4.732

6 12 12 (3, 3) −6.000 −5.968

7 15 15 (4, 3) −7.220 −7.180

8 18 18 (5, 3) −8.429 −8.434

9 21 21 (5, 4) −9.650 −9.650

10 25 25 (5, 5) −11.118 −11.100

11 28 29 (6, 5) −12.327 −12.531

12 32 33 (7, 5) −13.745 −13.950

13 36 36 (7, 6) −15.177 −15.148

14 40 40 (4, 7, 3) −16.575 −16.575

15 44 44 (4, 7, 4) −18.002 −18.000

16 48 48 (6, 7, 3) −19.403 −19.420

17 52 52 (6, 7, 4) −20.813 −20.822

18 56 56 (6, 7, 5) −22.214 −22.232

19 60 60 (7, 8, 4) −23.643 −23.642

20 64 64 (7, 8, 5) −25.053 −25.053

21 68 68 (8, 8, 5) −26.453 −26.460

22 72 72 (8, 8, 6) −27.852 −27.861

23 76 76 (7, 10, 6) −29.262 −29.267

24 81 81 (7, 10, 7) −30.869 −30.847

25 85 85 (8, 10, 7) −32.270 −32.270

26 89 90 (9, 10, 7) −33.671 −33.843

27 93 94 (9, 10, 8) −35.064 −35.254

28 97 98 (8, 12, 8) −36.471 −36.671

29 102 102 (10, 12, 7) −38.070 −38.073

30 106 106 (11, 12, 7) −39.471 −39.477

31 111 111 (12, 12, 7) −41.070 −41.065

32 115 115 (12, 12, 8) −42.462 −42.458

33 119 120 (12, 12, 9) −43.855 −44.045

34 124 124 (9, 12, 9, 4) −45.434 −45.441

35 128 129 (7, 12, 11, 5) −46.816 −47.045

36 133 133 (7, 12, 12, 5) −48.410 −48.437

37 138 138 (7, 12, 11, 7) −49.996 −50.003

38 144 (7, 12, 12, 7) −51.786

39 148 (8, 12, 12, 7) −53.179

40 152 (9, 12, 12, 7) −54.571

Many of the clusters consist of only parallel (111)-
layers. We denote these structures by the numbers of
atoms in the layers. For example, the 13 atom cubocta-
hedron can be denoted as (3, 7, 3) FCC. The structures
with stacking faults are denoted by SF or HCP. Note that
all SF clusters can not be described with parallel (111)
planes.
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Table 2. The lowest energies of the FCC structures and struc-
tures with stacking faults (SF). N is the number of atoms. For
the pair-potential model (PP) the (negative) energy is given
as a number of bonds. For the many-atom model (TB) the to-
tal energy is given. The column “layers” give the numbers of
atoms in each close-packed layer for the best FCC structure of
the TB model.

N −EFCC
PP −ESF

PP layers EFCC
TB ESF

TB

41 156 156 (8, 14, 12, 7) −55.961 −55.974

42 160 160 (8, 14, 13, 7) −57.360 −57.371

43 165 165 (8, 14, 13, 8) −58.961 −58.972

44 169 169 (11, 14, 12, 7) −60.350 −60.365

45 174 174 (10, 14, 13, 8) −61.953 −61.954

46 178 178 (11, 14, 13, 8) −63.345 −63.346

47 183 183 (12, 14, 13, 8) −64.935 −64.933

48 187 187 (10, 16, 14, 8) −66.308 −66.342

49 191 192 (10, 16, 14, 9) −67.687 −67.933

50 196 198 (10, 16, 16, 8) −69.282 −69.663

51 201 202 (10, 16, 15, 10) −70.861 −71.056

52 207 207 (10, 16, 16, 10) −72.651 −72.638

53 211 211 (11, 16, 16, 10) −74.044 −74.021

54 216 216 (12, 16, 16, 10) −75.635 −75.625

55 220 220 (12, 16, 16, 11) −77.027 −77.018

56 225 225 (12, 16, 16, 12) −78.617 −78.608

57 229 229 (13, 16, 16, 12) −80.010 −79.980

58 233 234 (13, 19, 16, 10) −81.360 −81.587

59 238 240 (10, 16, 16, 11, 6) −82.949 −83.227

100 436 438 (18, 23, 24, 21, 14) −146.368 −146.614

top side top side

SFS 59 SFS 100

Fig. 2. The high-symmetry geometries of the 59 and 100 atom
clusters. The dark spheres show the stacking fault layers at
the surfaces. In both cases the FCC core is a truncated
tetrahedron.

3.1 Size range N ≤ 13

For the smallest sizes there is not always a distinction
between the FCC and HCP structure, for example, when
the cluster consists of only two (111)-layers. Up to N = 5
there is only one clear ground state geometry. The five
atom cluster is a trigonal bipyramid (tetrahedron with
one atom on one of the triangular surface). This is the first
clear HCP cluster. The six atom cluster shown in Figure 1
is the first one with two equally good geometries in the
PP model, i.e. an octahedron and a five atom cluster with
one atom added at any of the facets. In the TB model
the octahedron is the ground state due to the fact that
all the atoms have the same coordination. Similarly the
cluster with seven atoms has two ground state isomers in
the PP model: One atom is added on either of the six
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Fig. 3. The deviation of the ground state energy of the TB
model from that calculated from the mass formula, equa-
tion (3). The numbers indicate the most stable sizes. The ge-
ometries of these are shown in Figures 1 and 2.

atomic clusters. In the TB model again the octahedral
based FCC geometry is better.

For N = 8 the FCC structure is obtained by adding
two atoms to the octahedron. An other structure with the
same energy in the PP model is again obtained by adding
an atom in the trigonal bipyramid-based N = 7 cluster.
In this case the latter is the ground state of the TB model.

The cluster with more that 8 atoms have usually sev-
eral different geometries with the same coordination num-
ber and consequently the same energy in the PP model.
Especially, there are many isomers with stacking faults. In
the TB model the nonlinearity of the energy on the local
coordination reduces drastically the number of degenerate
geometries. In the 9 and 10 atom cluster the best FCC and
SF clusters still have the same energy in the PP model.
For N = 11 and 12 the clusters with stacking faults are
favourable in both models.

The cluster with 13 atoms is an interesting case. It
has a compact high-symmetry FCC structure, a cubocta-
hedron, which is often considered to be a low energy con-
figuration. However, there are two other geometries with
the same coordination number, a cuboctahedron changed
to an HCP cluster by rotating one of the surface triangles,
and a two-layer structure shown in Figure 1. Surprisingly,
the two-layer structure is the lowest energy state in the TB
model. Note also that according to Figure 3 the size 13 is
not magic in the hard sphere model.

3.2 Size range 14 ≤ N ≤ 19

In this size range there are three different domains of
structures. The fcc structures are based on cuboctahe-
dron and they have the lowest energy for N = 14 and
15. They are obtained by adding an atom on the square
facet of the cuboctahedron. It is interesting to note that
in the TB model the 15th atom should be placed on the
opposite site than the 14th atom to minimize the energy.



K. Manninen and M. Manninen: Stacking faults in close-packed clusters 247

This is actually the ground state geometry found for Al15

by Akola et al. [8]. For the 14 atom cluster the change of
the cuboctahedron to HCP does not change the energy. In
the PP picture the exists still another 14 atom structure
with the same energy. However, in the TB model this ge-
ometry which is based on the 12 atom cluster has slightly
higher energy than the ground state.

For N = 16 the FCC cluster is obtained by filling three
of the six square facets on the cuboctahedron. It consists
of three (111)-layers with 5, 7, and 3 atoms in each. We
denote this structure (5, 7, 3) FCC. The TB energy is
reduced by moving the third layer in the HCP site. The
17 atom cluster in TB model has two HCP geometries
with the same energy, one with (5, 7, 5) structure and
another with (5, 8, 4) structure. In the PP model these
are degenerate with the best FCC geometry based on the
cuboctahedron. In the 18 atom cluster the best TB geom-
etry is based on the same HCP pattern (6, 8, 4).

The most symmetric geometry for 19 atoms is a per-
fect octahedron which has an FCC structure and high co-
ordination. It consists of three (111)-layers with packing
(6, 7, 6). However, there are several structures with the
same PP energy, for example (7, 8, 4) FCC and (6, 7, 6)
HCP, where one of the triangles of the octahedron is ro-
tated, and also a packing (5, 9, 5). The lowest TB energy
is obtained for two different geometries. One is an FCC
geometry with (7, 8, 4) structure and the other a defected
cluster, where the stacking faults destroy the simple layer
structure. It is interesting to note that the TB energy of
the most symmetric octahedral geometry is clearly above
that of these two ground state structures.

3.3 Size range 20 ≤ N ≤ 40

When the size is increased from 19 the clusters still consist
mainly of only three (111)-layers. Size 20 is an exception
having four layers (with a stacking fault). For most sizes
the ground state TB geometry has one or more stacking
faults. Sizes N = 26, 27, 28, 33, 35 have stacking faults
also in the best PP structures. Consequently, in these cases
the energy difference between the best FCC structures and
the ground state is large also in the TB model.

In clusters with 38, 39, and 40 atoms there is only
one kind of structure with a low PP energy, i.e. a trun-
cated octahedron (38) with one or two atoms added. All
geometries with stacking faults are much higher in energy.
For 38 atoms the truncated octahedron is the ground state
also for Lennard-Jones clusters [22] while in a realistic cal-
culation for anionic Al38 resulted several less symmetric
geometries with lower energies [34].

3.4 Size range 41 ≤ N ≤ 58

In this size range the clusters consists mainly of four (111)-
layers, three of the layers being in an FCC arrangement
and the fourth layer in either FCC or HCP place. Clus-
ter 46 is the first one showing stacking faults inside the
cluster. This requires at least five parallel (111)-layers. It

has a low-energy isomer (TB) with (5, 10, 12, 12, 7) struc-
ture where the first four layers form an HCP lattice and
the three last an FCC lattice (ABABC packing), and a
structure (7, 12, 12, 10, 5) structure where the first three
and the last three layers have FCC packing, but the center
layer is a stacking fault boundary (ABCBA packing).

The size 52 is the first having stacking faults in three
different directions. Its core is a truncated tetrahedron
with 31 atoms. Three of the facets have each a 7 atom
hexagonal layer in a stacking fault position. The geometry
is the same as in the 59 atom cluster shown in Figure 2,
but the 7 atom hexagon is missing in one of the facets of
the tetrahedron.

Coboctahedron is a high-symmetry geometry of a
55 atom cluster. However, like in the case of the 13 atom
cluster the cuboctahedron is not the best FCC structure
in the TB model. The best geometry has four (111)-layers
(12, 16, 16, 11) instead of five layers (6, 12, 19, 12, 6) of
the cuboctahedron. The Lennard-Jones pair-potential [21]
as well as many-atom potential derived from the effective
medium theory [35] give an icosahedral ground state. How-
ever, ab initio calculations for aluminium clusters suggest
that the cuboctahedron is the ground state [36,34].

3.5 N = 59 and N = 100

The cluster with 59 atoms was the first one where a low
energy geometry with stacking faults in all four directions
was found. It consists of a truncated tetrahedron with
additional SF layers on all four sites, as shown in Figure 2.
The 100 atom cluster was studied due to the possibility of
a similar geometry. Indeed this structure has a much lower
total energy (both in PP and in TB models) than the best
FCC geometry. The obtained SF geometry is most likely
the ground state, although a complete search for the SF
structures was not done in the case of N = 100.

3.6 Magic numbers

The total energy as a function of the cluster size reveals
the most stable sizes. Often the second difference of the to-
tal energy is presented in looking for magic sizes. However,
we will study the variation of the total energy per atom
around a smooth curve fitted to the total energy values.
This will show clearly not only the most stable sizes but
also the regions of increased stability. The total energy is
expressed as a “mass formula”

Eave = aN + bN2/3 + cN1/3, (3)

where the coefficients a, b, and c correspond to bulk cohe-
sion energy, surface energy and curvature energy, respec-
tively. We fix the coefficient a to the bulk value, which in
the TB model is a = −

√
3 and obtain the best fit with

b = 1.158 and c = 0.375.
Figure 3 shows the deviation of the energy per particle

from the smooth function of equation (3). Sizes 12, 26, 38,
50, and 59 are clear minima showing enhanced stability
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Fig. 4. The average moment of inertia, equation (4) as a func-
tion of the cluster size. Note that the minima at N = 26, 38,
50, and 59 coincide with the minima in the total energy shown
in Figure 3.

(the geometries of these are shown in Figs. 1 and 2). Note
that from these magic sizes only the 38 atom cluster is a
pure FCC cluster, the others having stacking faults.

Doye and Wales [28] have used the pair-wise Morse
potential to study the effect of the range of the potential
on the magic numbers. For the hardest potential they also
obtained the clusters with 26, 38, 50 and 59 to be “magic”
in agreement with our results.

3.7 moments of inertia

The stability of the cluster is connected to the compact-
ness of the cluster. The symmetry and relative size of the
cluster can be determined with help of the moments of
inertia. We have determined the three moments of inertia
in the principal axis representation. For a spherical cluster
the moment of inertia is proportional to N5/3. We define
a normalized moment of inertia as

I =
1

N5/3

N∑
i

(Ri −Rcm)2, (4)

where Ri is the atom position and Rcm the center of mass
(in units of the FCC lattice constant). The normalized
moment of inertia is shown in Figure 4. There is a striking
similarity between Figures 3 and 4. The average moment
of inertia, Figure 4, shows a marked minima at sizes 14, 26,
38, 50, and 59. All these except the size 14 are also minima
in the total energy curve. Moreover, most of the fine details
in the region from 26 to 59 are similar in Figures 3 and 4.

Figure 5 shows the difference between the maximum
and minimum components of the moment of inertia in the
principal axis representation. It reflects the symmetry of
the cluster but is not necessarily an indication of a spheri-
cal shape (e.g. in a cubic symmetry all the components of
are the same). It is interesting to note that in small sizes
a more spherical shape does not necessarily mean smaller
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Fig. 5. The difference between the largest and the smallest
components of the moments of inertia. When the difference is
zero the cluster has a cubic symmetry.

energy. For example, the cuboctahedron is not the small-
est energy state of 13 atom cluster in the TB model. The
“magic” 12 atom cluster has a rather high symmetry, as
seen in Figure 5, but it is still much less symmetric than
the (energetically less favourable) 14 atom cluster. Also
the magic 26 and 50 atom clusters are strongly deformed
from spherical (or cubic) symmetry.

4 Conclusion

We have studied the structures of hard sphere clusters
with N = 1...59 and N = 100 as special case. We used
a pair-potential and an many-atom interaction with a
square root dependence of the coordination number. The
total energy was minimized using a Monte Carlo method.
For most sizes the pair-potential model resulted several
isomers with the same total energy. Only for sizes N < 5
and N = 38...40. The FCC geometry was smaller in en-
ergy than any of the geometries with stacking faults. On
the other hand, for N = 5, 11, 12, 26–28, 33, 35, 49–51,
58, 59, 100 the ground state of the pair-potential model
does not have an FCC structure. Clusters with 59 and
100 atoms have a high symmetry and stacking faults on
all surface facets.

The many-atom interaction is more sensitive in sep-
arating in energy the different isomers. In most cases it
removes totally the degeneracy of the many ground state
isomers of the pair-potential model and usually favours
structures with stacking faults.

The energy as a function of the cluster size shows that
sizes 12, 26, 38, 50, and 59 have strongest energy minima,
but only the 38 atom cluster has a perfect FCC structure.
The average moment of inertia correlates well with the
total energy curve showing strong minima also at sizes
26, 38, 50, and 59. However, while these sizes are com-
pact the variation of the components of the inertia tensor
shows that the 26 and 50 atom clusters are still strongly
deformed from the spherical (or cubic) symmetry.
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5. S. Kümmel, J. Akola, M. Manninen, Phys. Rev. Lett. 84,
3827 (2000)

6. D. Reinhard, B.D. Hall, D. Ugarte, R. Monot, Phys. Rev.
B 55, 7868 (1997)
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